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New or “juvenile” crust forms and grows mainly through mafic to andesitic magmatism at Pacific-type or
accretionary type convergent margins as well as via tectonic accretion of oceanic and island-arc terranes and
translation of continental terranes. During the last decades the juvenile or recycled nature of crust has been
commonly evaluated using whole-rock isotope and Hf-in-zircon isotope methods. However, evidence for the
accretionary or Pacific-type nature of an orogenic belt comes from geological data, for example, from the
presence of accretionary complexes (AC), intra-oceanic arcs (IOA), oceanic plate stratigraphy units (OPS), and
MORB-OIB derived blueschist belts (BSB). The Central Asian Orogenic Belt (CAOB) represents the world's largest
province of Phanerozoic juvenile crustal growth during ca. 800 m.y. between the East European, Siberian, North
China and Tarim cratons. From geological point of view, the CAOB is a typical Pacific-type belt as it hosts numer-
ous occurrences of accretionary complexes, intra-oceanic arcs, OPS units, andMORB-OIB derived blueschist belts.
In spite of its accretionary nature, supported by positivewhole rockNd isotope characteristics in CAOB granitoids,
the Hf-in-zircon isotope data reveal a big portion of recycled crust. Such a controversy can be explained by
presence of accreted microcontinents, isotopically mixed igneous reservoirs and by the tectonic erosion of juve-
nile crust. Themost probable localities of tectonic erosion in the CAOB are themiddle and southern Tienshan and
southern Transbaikalia because these regions comprise a predominantly recycled crust (based on isotope data),
but the geological data show the presence of intra-oceanic arcs, blueschist belts and accreted OPS with oceanic
island basalts (OIB) and tectonically juxtaposed coeval arc granitoids and accretionary units. This warrants
combination of detailed geological studies with isotopic results, as on their own they may not reflect such
processes as tectonic erosion of juvenile crust and/or arc subduction.

© 2016 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
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1. Introduction: formation and transformation of continental crust
in Asia

Newor “juvenile” continental crust forms andgrows through tonalite–
trondhjemite–granodiorite (TTG-type) and mafic magmatism at conver-
gentmarginsmostly in intra-oceanic arcs and through intra-platemantle
plumemagmatism. In addition, the volume of continental crust can be in-
creased via accretion of oceanic crust, island-arcs and/ormicrocontinents
(Fig. 1). The juvenile crust can be then re-worked and/or recycled at
convergent margins by andesitic to felsic magmatism in continental
arcs and by collision-related granitoid magmatism and metamorphism.
Evaluation of proportions of juvenile continental crust versus the crust
which was reworked in orogenic belts during the suturing of oceans
and continental collisions is extremely important in academic and
applied (mineral exploration and prospecting) sciences to understand
major stages of Earth's geological history and secular changes in
dominant types and settings of mineral deposits.

Asia is the world's most complex area of continental crust formation
and its interactionwith the oceanic lithosphere of the Pacific plate at the
western Pacific as well as in the India-Sumatra subduction zones, both
producing large volumes of TTG-crust (Fig. 2). Asia can be viewed as a
probable core of the next supercontinent (Maruyama et al., 2007;
Safonova andMaruyama, 2014). The Asian part of the Eurasian continent
includes five major cratonic blocks (Siberia, Tarim, North China, South
China and India), two large younger continental domains (Kazakhstan,
Indochina), numerous microcontinents (MCs) and orogenic belts. It has
been formed by multiple events of oceanic subduction and suturing
in the Paleo-Asian, Paleo-Pacific, Tethyan and Pacific oceanic realms,
accompanied by multiple continental collisions (e.g., Maruyama et al.,
1989; Zonenshain et al., 1990; Sengör and Natal'in, 1996; Jahn et al.,
2000; Yakubchuk, 2004; Windley et al., 2007; Safonova and Santosh,
2014; Dong et al., 2016). Oceanic closures and related continental
collisions form two types of orogenic belts: accretionary or Pacific-type
(also known as Turkic-type) and Himalayan-type (also known as
collision-type) (Fig. 3). The Pacific-type belts form above the subduction
zones, where oceanic lithosphere is submerged under intra-oceanic arcs
or active continental margins, e.g., the Circum-Pacific orogens (Fig. 3A)
and their fossil equivalents of the Central Asian Orogenic Belt (CAOB;
Fig. 2). The Pacific-type belts are major sites of continental growth
through TTG-type magmatism and accretion (e.g., Maruyama et al.,
1989; Stern, 2010; I. Safonova et al., 2011; Safonova and Maruyama,
2014; Xiao and Santosh, 2014). The Himalayan-type belts result from col-
lisions of continental blocks accompanied by strong re-working of already
Fig. 1. A cartoon, illustrating a principal model of continental construction at Pacific-type or acc
tectonic domains and associated types of magmatism (modified after Groves et al., 1998; I.
(3, 4) stages of continental construction: 1 — formation of juvenile crust in intra-oceanic a
continental arcs (mafic to felsic magmatism) and in intra-plate settings (mafic and bimodal m
and microcontinental terranes; and 4 — collision of terranes.
existing continental crust through granitoid magmatism and extended
medium-pressure (MP) to high-pressure–high-temperature (HP-HT)
metamorphism (Fig. 3B).

The CAOB is located between the East European, Siberian, North
China and Tarim cratons, encompassing an immense area from the
Urals in the west, through Altai-Sayan and Transbaikalia in Russia,
Kazakhstan, Kyrgyzstan, Uzbekistan, north-western China, Mongolia,
and north-eastern China to the Sea of Okhotsk in the Russian Far East
(Figs. 2, 4). It is the world's largest accretionary orogen that evolved
during some 800 m.y. The CAOB includes predominantly Pacific-type
orogens, but Himalayan-type orogens can be also recognized. Evaluation
of proportions between juvenile and recycled crust, i.e., proportions
of Pacific-type versus Himalayan-type orogens, is a key element in
reconstructing major stages and dynamics of continental growth.
As syn-orogenic and post-orogenic tectonics may have disturbed or
destroyed the original relationships of rocks units, direct “in-field”
evaluation of those proportions can be problematic.

During recent years, the focus in the studies of orogenic belts has
shifted from thefield geology to the application ofmethods of radiogen-
ic isotope research, the most reliable and popular of which are whole-
rock Nd and Hf-in-zircon systematics (Jahn, 2004; Kröner et al., 2014).
The Nd systematics can provide a rough estimate of the proportions of
juvenile versus recycled older crustal material for samples with
determined crystallization ages. The Hf systematics, if combined with
geochronology, has a potential not only to fix “juvenile versus recycled”
crust proportions but to reconstruct a history of magmatism through
age vs isotope correlations. The numerous Nd and Hf isotope data,
obtained during the last 10 years, show from 20 to 80% of recycled
crust in the CAOB (Jahn, 2004; Kovalenko et al., 2004; Condie and
Kröner, 2013; Turkina et al., 2012; Kröner et al., 2014) in contrast to its
geologically recorded predominantly Pacific-type nature (e.g., Windley
et al., 2007; Kruk et al., 2011; Yarmolyuk et al., 2012; Safonova and
Maruyama, 2014) (Fig. 5). This paper is an attempt to understand the
reasons for the discrepancy and possible limitations of the isotopic
methods in differentiating Himalayan-type and Pacific-type orogens
as well as in evaluating the proportions of juvenile and recycled crust
in the CAOB. The four key components of Pacific-type orogens –
accretionary complexes (AC), intra-oceanic arcs (IOA), oceanic plate
stratigraphy (OPS), and MORB-OIB derived blueschist belts (BSB) –
will be systematically assessed on detailed geological studies accompa-
nied by well-justified application of up-to-date high-precision analyti-
cal methods for reconstructing the settings of formation of continental
crust within the structurally complex orogenic belts. A special focus
retionary orogens, including formation of juvenile and recycled continental crust at major
Safonova et al., 2011). Numbers in circles show the main magmatic (1, 2) and tectonic
rcs (TTG-type and mafic magmatism); 2 — formation of juvenile and recycled crust at
agmatism related to rifting/mantle plumes); 3 — accretion of oceanic, island-arc terranes



Fig. 2. A general tectonic outline of Asia: major cratonic blocks, microcontinents, Pacific and collision-type orogenic belts (modified from Maruyama and Sakai, 1986; Maruyama et al.,
1989; Safonova and Maruyama, 2014). Numbers in circles for orogenics belts: 1 = Uralian, 2–6 = Central Asian (2 = Baikal–Muya, 3 = Yenisey–Transbaikalia–North Mongolia, 4 =
Altay–Sayan–NW Mongolia, 5 = Irtysh–Zaisan, 6 = Tienshan), 7 = South Inner Mongolia, 8 = Mongol–Okhotsk, 9 = Sikhote–Alin, 10 = Verkhoyansk, 11 = Okhotsk–Chukotka,
12 = South Anyui, 13 = West Kamchatka, 14 = Pamir–Hindukush, 15 = Kunlun–Qinling, 16 = Tibet–Himalaya, and 17 = South China. CAOB, Central Asian Orogenic Belt; and
AHOB, Alpine-Himalayan Orogenic Belt. For details about CAOB units see Figs. 4 and 10. The outlines of main microcontinents are very relative and shown out of scale.

8 I. Safonova / Gondwana Research 47 (2017) 6–27
will be given to the links between geological, geochemical and isotope
data.

Formation and transformation of continental crust in Central and
East Asia is a focus of Project#592 “Continental construction in the
Central Asian Orogenic Belt compared to actualistic examples in the
western Pacific” of the International Geoscience Program (2012–2016)
supported by UNESCO and International Union of Geosciences
(https://sites.google.com/site/igcp592/), which the author of this
paper is a leader of together with Profs. Reimar Seltmann, Min Sun
and Wenjiao Xiao. This paper reviews results of the 4 years of author's
project activity.
2. Pacific-type orogens as Earth's principal sites of continental
growth: definition and recognition

The Pacific-type orogenic belts form above the subduction zones,
where oceanic lithosphere is submerged under active continental
margins (Fig. 3A). The Pacific-type belts are the most important sites
of juvenile crust formation through subduction-related TTG-type
granitoid magmatism (i.e., calc-alkaline andesitic volcanism) and M-
and I-type granitoid magmatism and through accretion of various
fragments of oceanic lithosphere (i.e., oceanic islands, plateaux and
ridges) and continental crust, such as island arcs and microcontinents

https://sites.google.com/site/igcp592/


Fig. 3. Major features of accretionary or Pacific-type (P-type) and Alpine-type or collisional (C-type) orogenic belts (modified from Maruyama et al., 1996; Santosh et al., 2010).
Abbreviations: MORB, mid-oceanic ridge basalt; MP, medium pressure; high-P/T, high temperature–high pressure; OIB, oceanic island basalt; OPB, oceanic plateau basalt; OPS, ocean
plate stratigraphy; and TTG, tonalite-trondhjemite-granodiorite.
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(Maruyama et al., 1996; Santosh et al., 2010;Maruyama et al., 2011). As
a result, the subduction forms accretionary complexes, which, together
with accreted terranes,finally enlarge the continents. Consequently, the
most important “diagnostic” constituents of Pacific-type orogens are
intra-oceanic arcs, ocean plate stratigraphy (OPS), blueschist belts and
accretionary complexes, which may include fragments of the former
three (Table 1; Fig. 6).

The intra-oceanic arcs form at convergent margins, in the upper
“stable” plate, when the subducting plate submerges to the depths of
melting, i.e., to ca. 50–100 km (Fig. 6A). Many scientists believe that
intra-oceanic arcs are most important sites of juvenile continental
crust formation and that the subduction-related TTG-type granitoid
magmatism is a main contributor to continental growth (e.g., Clift
et al., 2003; Stern, 2010; Maruyama et al., 2011; Safonova and
Maruyama, 2014). The intra-oceanic arcs may consist of volcanic flows
of dominantly basalt-andesite-(boninite) composition and tonalite-
diorite-granodiorite plutons. The composition of both types of magmat-
ic rocks depends on the amount of water released from the subducting
hydrated oceanic slab, which, in turn, is determined by the distance
from the trench. Consequently, at early stages of IOA evolution, the
subduction produces fore-arc depleted tholeiitic basalts, andesibasalts
and boninites. In time and with distance away from the subduction
zone, i.e., continentward, the supra-subduction magmatism proceeds
at lower degrees of melting and produces calc-alkaline, alkaline and
shoshonitic andesitic to felsic series, more enriched in incompatible
elements.

The ocean plate stratigraphy represents a regular succession of
sedimentary and magmatic rocks that were deposited on the sea floor
as the underlying oceanic basement made its inevitable journey from
its formation at a mid-ocean ridge to its demise at a deep sea trench
(e.g., Isozaki et al., 1990; Maruyama et al., 2010; Kusky et al., 2013).
The “standard” model for OPS includes typical Penrose type ophiolite,
grading down from pelagic sediments to basalts, gabbros, and ultra-
mafics formed on the oceanic floor (Fig. 6B). As the oceanic plate
moves towards the trench, the pelagic sedimentation continues until
the plate enters the trench. At this point, the pelagic sediments and
their underlying lavas become covered by hemipelagic shale/mudstone,
greywacke and turbidite (Kusky et al., 2013). If a topographic rise or
oceanic rise (seamount, island, plateau) is present on the oceanic
floor, the OPS will be added by oceanic island carbonate cap and
carbonate-siliceous-volcanic epiclastic slope facies and breccia. At con-
vergent margins, OPS units may be accreted to island arcs/continental
margins or tectonically eroded and subducted, carrying water and
carbonate-richmaterials deep into themantle. The presence of accreted
seamount OPS units in foldbelts is a key signature of a Pacific-type
orogen.



Fig. 4. A general scheme of the Central Asian Orogenic Belt showing major orogenic belts (italic font) and microcontinents or their groups (pink lines) plus surrounding tectonic structures (compiled using Ren et al., 1999; Windley et al., 2007;
Yarmolyuk et al., 2011; Kröner et al., 2014; Safonova and Santosh, 2014; Guy et al., 2015; Buriánek et al., in this issue; Degtyarev et al., in this issue; Dolgopolova et al., 2017-in this issue). Stars: accreted OIB (golden), blueschist (blue), intra-oceanic
arc (green). Accretionary complexes: Ag, Agardag; Ak, Akiyoshi; Bg, Bayingou; BH, Bayanhongor (Burg Gol); Ch, Chichibu; Dr., Darbut; Dz, Dzhida; FK, Fan-Karategin; Il, Ilchir; Kb, Kurtushibin; Kl, Kalamaili; KhT, Khan-Taishir; Km, Karamay; Kh,
Khabarosvk; Kr, Kurai; Ks, Kokshaal; Kt, Katun; MT, Mino-Tamba; KM, Kiselevka-Manoma; Nz, Naizawa; O, Oka (Hug, Shishged, Shishkhid); Sg, Smagin; Sh, Shimanto; Sk, Solonker; Sm, Samarka; Ta, Taukha; Tn, Tangbale; TO, Tannu-Ola; UB, Ulaan-
baatar (Adaatsag); Zs, Zasur'ya. Other abbreviations: BCA, Bozshakol-Chingiz arc; CK, Chatkal-Kurama continental arc;MC,microcontinents (TM, Tuva-Mongolian; SG, SouthGobi; SM, SouthMongolia; Tarb., Tarbagatai); N, north; OB, orogenic belts; S,
south; and VPB, volcano-plutonic belts. Dashed lines: dark blue— boundary of theWest Siberian Basin; pink— a terrane of debatable origin (MC or another); and gray— superimposed VPB. The shapes and sizes of the fields are relative inmost cases.
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Fig. 5. Isotope-based proportions of juvenile and recycled crust in the CAOB. A, Nd and Hf isotopic data based estimates of the volume distribution of juvenile continental crust (modified
from Condie and Kröner, 2013); B, the peaks of U–Pb crystallization ages for over 7000 detrital zircons obtained worldwide (Campbell and Allen, 2008) and the respective portions of
juvenile crust (modified from Hawkesworth et al., 2010). Settings of juvenile crust formation (for A): IOA, intra-oceanic arcs; ConA, continental arc; OJC, other juvenile crust terranes
(e.g., intra-plate igneous fields). The names of supercontinents (for B) are after Santosh et al., 2014.
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Blueschist is a metabasite, containing Na-amphibole stable at
relatively high-P and low-T conditions. The term “blueschist belt” (BSB)
refers to the blueschist-assemblage-bearing part of an orogen, which
may also include metagraywacke and marble, as well as eclogite-facies
rocks. BSBs aremarkers of fossil subduction zones, because they formdur-
ing the stop/cessation of subduction often accompanied by exhumation of
buriedmetamorphic rocks, and therefore are of high tectonic significance
(Miyashiro, 1973; Xiao et al., 1994; Maruyama et al., 1996). BSBs may be
part of paired metamorphic belts, which are spatially related, i.e., located
side-by-side, metamorphic belts of low dP/dT (greenschist, andalusite-
sillimanite) and high dT/dP (blueschist, eclogite) (Miyashiro, 1961;
Oxburgh and Turcotte, 1971; Brown, 2010; Fig. 6C). The pairedmetamor-
phic belts were first recognized in Japan (Miyashiro, 1961; Maruyama,
1997); similar belts in different Phanerozoic orogenic belts have been
subsequently identified and are thought to indicate destructive conver-
gent margins (e.g., Zhang et al., 1993; Maruyama et al., 1996; Brown,
2010). BSBs are classified into two types according to the protoliths. In
Pacific-type orogens, the protoliths for blueschists are rocks forming an
accretionary complex, i.e., OPS units, including MORB, OIB, seamount
(pure) limestone and turbidite. The protoliths of blueschists in C-type
orogens are continental basement granite-gneiss complexes and their
overlying peraluminous sediments, impure limestones and bimodal
volcanic series (Table 1).

The accretionary complexes consist of an accretionary wedge or
prism and subduction-related metamorphic units. The accretionary
wedge forms by off-scrapping and underplating accretion to the non-
Table 1
Main features of accretion-type and collision-type orogenic belts (modified from Maruyama et

Rock types/other aspects P-type: subduction-related orogens with accretionary c

Key lithologies
Shallow-marine sediments Reefal limestone, volcanogenic-carbonate breccia, often

siliceous shale and mudstone (OPS)
Deep-sea sediments Bedded chert often with manganese-nodules (OPS)
Turbidite thick and immature trench-fill graywackes (mafic to an
Terrigenous fan deep-marine flysch/forearc covering OPS
Volcanic units Mafic to andesitic and felsic lavas
Intrusive rocks Huge subduction-related granitoid batholiths

Related metamorphic belts
Key metamorphic assemblages Blueschist, greenschist, HP-UHP
Blueschist protoliths MORB, OIB
Metamorphosed peridotites Strongly serpentinized spinel- and plagioclase-bearing p
Paired metamorphic belts May be present

Other aspects
Continental basement Absent
Ore black smokers, Fe-Mn and volcanogenic-sedimentary de
Intra-oceanic arc boninites May present
Structural features Duplex OPS structures; dominantly asymmetric folds an

Abbreviations: HP-UHP— high pressure-ultra high pressure;MORB—mid-oceanic ridge basalt;
subducting tectonic plate or the landward slope of trench. Lithologically,
accretionary wedge is dominated by OPS units plus terrigeneous trench
sediments, oceanward olistostrome, tectonic and serpentinite mélanges.
After cessation of accretion and subduction, accretionary wedge together
with blueschists and other exhumed metamorphic rocks form accretion-
ary complex (Fig. 6D). During subduction, slices and sheets of scrapped-
off rocks pile next to each other along reverse or thrust faults resulting
in formation of a very complicated structure. Structurally, an accretionary
complex is dominated byduplexes and thrust imbricates characterized by
inward younging of beds within each sheet and overall outward
younging. A key element of accretionary complex is a duplex structure
formed in the hanging wall of the trench; its geometry and the direction
of bed younging can be used to determine the direction of subduction
or “subduction polarity” (e.g., Isozaki et al., 1990; Maruyama et al.,
2010; Wakita, 2012; Safonova and Santosh, 2014; Fig. 6D).

Thefield and laboratory recognition of OPS, IOAs, BSBs andACs is nec-
essary for differentiation of Himalayan-type or Pacific-type belts. Pacific-
type orogens can be recognized by the presence of: (i) blueschists
formed after mid-oceanic ridge basalt (MORB) and oceanic island or
plateau basalt (OIB/OPB); (ii) dominantly mafic boninite-bearing island
arcs; (iii) accreted oceanic rises, especially those capped by carbonates;
(iv) pairedmetamorphic belts; and (v) huge supra-subduction granitoid
batholiths (see Table 1 and Safonova and Maruyama, 2014). The accre-
tionary complexes, OPS units and blueschist belts of the CAOB have
been reviewed in Volkova and Sklyarov (2007) and Safonova and
Santosh (2014). The list of OIB-bearing OPS and intra-oceanic arcs with
al., 1996; Safonova and Maruyama, 2014).

omplexes H-type: collision-related orogens built over continental basement

Z-folded, Thick platform carbonate and clastics

Absent
desitic) Platform cover (peraluminous and carbonate-rich deposits)

continental molasse and/or foreland basin
Bimodal (basalt and dacite) lavas
Syn-collisional (I and S-type) and post-collisional (A-type)
granitoids

Blueschist, MP (kyanite-sillimanite), UHP
Peraluminous, pelitic, bi-modal

eridotites Strongly metamorphosed garnet- and spinel-peridotite
Absent

Abundant granite-gneiss complexes
posits Petroleum (foredeep troughs), gold from quartz veins; gems

Always absent
d small thrusts Variable deformation styles to form buckling, huge thrusts, etc.

MP—medium pressure; OIB— oceanic island basalt; and OPS—Ocean Plate Stratigraphy.



Fig. 6. Major diagnostic features of Pacific-type orogenic belts: Intra-oceanic arcs (A), Ocean Plate Stratigraphy including accreted seamounts (B), paired metamorphic belts (C), and
accretionary complexes (D). A, a typical intra-oceanic arc system with adjacent back-arc basin showing major crustal and upper mantle components and major sites of melt
generation: 1 — at mid-oceanic ridges, 2 — above the subducting slabs (modified from Stern, 2010); B, OPS with seamounts (modified from Maruyama et al., 2010; Safonova et al.,
2016b); C, principal scheme of formation of paired metamorphic belts, whose key component is the MORB-OIB derived blueschist (modified from the website of the Society for
Sedimentary Geology, http://www.sepmstrata.org/ ); D, structurally complex accretionary wedges (modified from Wakita, 2012).
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or without blueschists in the CAOB, including their location and age, are
shown in Tables 2, 3.

3. The Central AsianOrogenic Belt:world's largest Pacific-typeorogen

3.1. Definition, brief history and key terranes

The Central Asian Orogenic Belt (CAOB) is the world's largest
accretionary orogen, formed during the Neoproterozoic to Paleozoic
evolution of the Paleo-Asian Ocean and multi-stage collisions of the
Siberian, Tarim and North China cratonic blocks, Kazakhstan and
Mongolian Precambrian terranes (Fig. 4). In late Paleozoic time, the
amalgamating CAOB was also affected by the collision with the East
European Craton and formation of the Uralian Orogenic Belt (Puchkov,
1997). Formation of CAOB started from accretion of numerous
Neoproterozoic intra-oceanic arc terranes to the southern margin of
the Siberian Craton, reaching its peak during the late Neoproterozoic
to the early Paleozoic (e.g., Buslov et al., 2001; Turkina, 2002;
Gordienko et al., 2010) (Table 2). During the rest of the Phanerozoic,
accretion of oceanic to intra-oceanic arc terranes and probably
Gondwana-derived microcontinents continued at the southern active
margin of the Siberian Craton with contribution to the intra-plate
mafic and granitoid magmatism (e.g., Kovalenko et al., 2004; Windley
et al., 2007; Safonova, 2009; Xiao et al., 2009, 2010; Safonova et al.,
2011; Yarmolyuk et al., 2012; Donskaya et al., 2013; H. Yang et al.,
2015).

The subduction ceased diachronously in the late Paleozoic-Mesozoic
after the closure of the Paleo-AsianOcean and its Turkestan, Junggar and
Mongol-Okhotsk branches with relevant rocks occurring in East
Kazakhstan (Safonova et al., 2012; Safonova and Santosh, 2014), South
Tienshan (Biske and Seltmann, 2010; Wang et al., 2011; Safonova
et al., 2016a), Junggar (Wang et al., 2003; G. Yang et al., 2015) and Far
East (Dobretsov et al., 2003; Donskaya et al., 2013; H. Yang et al.,
2015), and collision of the Siberian Craton with the Tarim and North
China cratons and the Kazakhstan continent to become part of Laurasia
(e.g., Safonova and Maruyama, 2014). Formation of the central part of
CAOB is related to the Paleozoic collisions of the Tuva-Mongol, Dzabkhan
(Baydaric, Baydrag), Tarbagatai and South Gobi microcontinents with
the Siberian Craton (e.g., Didenko et al., 1994; Salnikova et al., 2001;
Kozakov et al., 2007; Demoux et al., 2009). Western part of CAOB was
formed during the Middle Paleozoic collision of the Kazakhstan conti-
nent with the Siberian active continental margin. This produced the
Altai orogen, extending from Russia across eastern Kazakhstan and
China to Mongolia (e.g., Buslov et al., 2001; Xiao et al., 2010; Glorie
et al., 2011; Safonova, 2014). Collisions between the Kazakhstan
continent and Tarim Craton and smaller microcontinents formed the
Tienshan orogenic belt (e.g., Gao et al., 1998; Chen et al., 1999; Xiao
et al., 2004; Charvet et al., 2007; Biske and Seltmann, 2010; Wang
et al., 2010). The eastern part of CAOB was formed during the Late
Permian to Triassic approach of the North China and Siberian Cratons
and collision of the former with the island-arc terranes and
microcontinents at the southern margin of the latter (e.g., Zhao et al.,
1990; Xiao et al., 2004; Zhao et al., 2013; Zhou and Wilde, 2013; H.
Yang et al., 2015; Li et al., 2016).

During the last 15 years, there has been much discussion about the
mechanisms of the CAOB formation, e.g., extended long-living arc
versus numerous arcs and microcontinents (e.g., Sengör and Natal'in,
1996; Didenko et al., 1994; Buslov et al., 2001; Windley et al., 2007;
Xiao et al., 2010; Safonova et al., 2011 and references therein), the na-
ture of its continental crust, i.e., juvenile versus recycled, the
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Table 2
Major intra-oceanic arcs of the Central Asian Orogenic Belt.

No. Terrane name Location Age Bon BSB References

1 Dunzhugur NWMongolia–eastern Tuva, Russia Neoproterozoic Yes Yes Kuzmichev et al. (2001)
2 Aksu Western Chinese Tienshan Neoproterozoic Yes Zhu et al. (2011)
3 Shishkhid (Oka-Hugein) NWMongolia–eastern Tuva, Russia Late Neoproterozoic Yes Yes Kuzmichev et al. (2005)
4 Kurtushibin East Sayan, Russia Late Neoproterozoic Yes Yes Dobretsov et al. (1992), Volkova et al. (2009)
5 Agardag NW Mongolia-SE Tuva, Russia Late Neoproterozoic Pfänder et al. (2002)
6 Dariv Western Mongolia Late Neoproterozoic Dijkstra et al. (2006)
7 Khan-Taishirin Western Mongolia Late Neoproterozoic Yes Izokh et al. (1998)
8 Tannu-Ola Western Tuva, Russia Late Neoproterozoic Mongush et al. (2011)
9 Lake Western Mongolia ca. 570 Ma Kozakov et al. (2007); Kovach et al. (2011)
10 Dzhida N. Mongolia-Transbaikalia (Russia) l. Neoproterozoic–Early Cambrian Yes Gordienko et al. (2007)
11 Kurai Southern Russian Altai 598 ± 25 Ma Yes Yes Simonov et al. (1994); Buslov et al. (2002)
12 Katun Northern Russian Altai early Cambrian Yes Buslov et al. (1998), Safonova et al. (2011a)
13 Bozshakol-Chingiz East Kazakhstan late Cambrian Yes Shen et al. (2015), Degtyarev (2011)
14 Dzhalair-Naiman Northern Kyrgyz Tienshan Cambrian Ryazantsev et al. (2009)
15 Selety/Severny Segment Northern Kazakhstan Late Cambrian-early Ordovician Yes Windley et al. (2007), Degtyarev (2011)
16 Fan-Karategin Southern Tienshan, Tajikistan Ordovician Yes Volkova and Budanov (1999)
17 Tangbale Western Junggar, NW China Ordovician Yes X. Xiao et al. (1994)
18 Kentash arc Western Kyrgyz Range, northern Tienshan Middle Ordovician Degtyarev et al. (2012)
19 Gobi Altai SW Mongolia Late Ordovician—early Silurian Yes Dergunov et al. (2001), Guy et al. (2015)
20 Kyzylkum (Chatkal) arc Turkestan-Alai, Uzbekistan Silurian Biske and Seltmann (2010), Dolgopolova et al.

(2017-in this issue)
21 Dananhu-Tousuquan arc West Junggar Late Silurian Xiao et al. (2015)
22 Dulate arc, Shaerbulake Fm. East Junggar Early Devonian Yes Zhang et al. (2005)
23 Kuerti NE Junggar, NW China Middle Devonian Yes Wang et al. (2003)
24 Kangbutiebao Southern Chinese Altai Devonian Yes Niu et al. (2006)
25 Char arc East Kazakhstan Late Devonian or Early Carboniferous Yes Yes Volkova et al. (2008), Kurganskaya et al. (2014)
26 Bogda arc N. Chinese Tienshan Late Carboniferous Xie et al. (2016)
27 Solonker arc Inner Mongolia Early Permian Yes Yes Jian et al. (2010)

Bon, boninite; and BS, blueschist.
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proportions of juvenile and recycled crust (e.g., Jahn et al., 2000;
Safonova et al., 2011; Yarmolyuk et al., 2012; Kröner et al., 2014) and/
or the size, age and constituents of the continents and the number of
microcontinents incorporated into the CAOB (Dobretsov and Buslov,
2007; Levashova et al., 2010). A contribution to understanding the na-
ture of the CAOB can be made by recognition of IOAs, accreted terranes
of seamountOPS and BSBs hosted by and/or associatedwith the numer-
ous late Neoproterozoic to Mesozoic accretionary complexes present in
Central and East Asia (Safonova and Santosh, 2014).

3.2. Intra-oceanic arcs

Identification of intra-oceanic arcs is of primary importance
for recognizing the Pacific-type orogenic belts because they have
the highest rate of TTG generation, i.e., of juvenile crust. The
key indicative features of IOAs are: (i) the presence of boninites;
(ii) predominantly (about 70%) mafic (basalt-andesibasalt) compo-
sition of rocks in modern IOAs (e.g., Gil, 1981; Kelemen et al.,
2003); and (iii) immature turbidite (greywacke) and deep-sea flysch
(Fig. 6A). The CAOB hosts widespread intra-oceanic arcs, many of
them with boninites (Tables 1, 2; Fig. 4). The intra-oceanic arcs of
CAOB are related to the evolution of the Paleo-Asian Ocean including
its probable two major branches, Turkestan Ocean (or South
Tienshan) and Mongol-Okhotsk Ocean, and active margins of the
Siberian, Kazakhstan, and North China continents. Numerous
late Neoproterozoic to Carboniferous intra-oceanic arcs of the
Paleo-Asian Ocean (most of them include boninites) outcrop
in Transbaikalia and northern Mongolia, Tuva and northwestern
Mongolia, western Mongolia, Russian-Kazakh-Chinese-Mongolian
Altai, western and eastern Junggar, southern Mongolia and Inner
Mongolia (e.g., Simonov et al., 1994; Izokh et al., 1998; Buslov
et al., 1998, 2001; Pfänder et al., 2002; Dobretsov et al., 2003;
Kovalenko et al., 2004; Dijkstra et al., 2006; Zhang et al., 2005; Niu
et al., 2006; Gordienko et al., 2007; Ota et al., 2007; Gordienko
et al., 2010; Jian et al., 2010; Yang et al., 2014) (Table 2). Early
Paleozoic intra-oceanic arcs of the Turkestan Ocean have been identi-
fied in the South Fergana zone of the western Tienshan, e.g., the Ordovi-
cian Taldyk Formation (Burtman, 2008). Subduction of the Mongol-
Okhotsk Ocean, an eastern branch of the Paleo-Asian Ocean (Didenko
et al., 1994; Dobretsov et al., 1995; Donskaya et al., 2013; Ruppen et al.,
2014), produced Carboniferous to Permian IOAs in Inner Mongolia,
northeast China andRussian Far East; the better knownare the Early Car-
boniferous Baolidao arc (309 Ma) and Late Carboniferous-Permian
Hegenshan arc in Inner Mongolia (e.g., Chen et al., 2000; Dergunov
et al., 2001; Miao et al., 2008). The amount of the late Neoproterozoic
intra-oceanic arcs is much greater than that of middle and late Paleozoic
arcs (Fig. 4; Table 2). Western part of the Paleo-Asian Ocean, including
the Turkestan branch, was progressively sutured during the Carbonifer-
ous and Permian, whereas its eastern part, i.e., the Mongol-Okhotsk
Ocean, remained opened until the Jurassic (e.g., Zonenshain et al.,
1990; Gordienko, 1994; Dobretsov et al., 1995; Buslov et al., 2001;
Biske and Seltmann, 2010).

3.3. Accreted oceanic islands/seamounts/plateaus

The second important feature of the Pacific-type orogens
is accreted OPS of oceanic rises or seamount OPS, which is charac-
teristic of Pacific convergent margins only (e.g., Isozaki et al.,
1990; Kanmera and Sano, 1991; Safonova, 2009; Kusky et al.,
2013; Safonova and Santosh, 2014). Seamount OPS includes OIB,
OPB, MORB, foothill siliceous sediments (chert, shale, mudstone),
carbonate-siliceous-volcanic epiclastic slope facies and breccia,
and oceanic island carbonate cap (Fig. 6B). The oceanic rises typi-
cally form during the passage of subducting oceanic plate over the
mantle plume head to be finally accreted and/or partially and fully
eroded at convergent margins and subducted deep into the mantle
(e.g., Hofmann, 1997; Maruyama et al., 2007; Clift et al., 2009;
Scholl and von Huene, 2007; Safonova, 2009; Safonova and
Maruyama, 2014). The CAOB hosts numerous accreted oceanic
rises tracing almost continuous archives of seamount OPS from



Table 3
Accretionary complexes of the Central Asian Orogenic Belt with accreted OIB-OPS (modified and upgraded from Safonova and Santosh, 2014).

Terranea Geography Age of seamount
(or associated OPS)

Age of accretion Referencesb

Oka NWMongolia–E. Tuva, Siberia
(Russia)

Late Neoproterozoic Latest Neoproterozoic Kuzmichev et al. (2005)

Ilchir (Il) N. Mongolia-W. Sayan, Siberia Late Neoproterozoic Cambrian–Early Ordovician Kuzmichev et al. (2001),
Dobretsov et al. (1992)

Kurtushibin (Kb) E. Sayan, Siberia (Russia) Late Neoproterozoic Cambrian–Early Ordovician Dobretsov et al. (1992),
Volkova et al. (2009)

Agardag (Ag) NWMongolia-SE Tuva, Siberia
(Russia)

569 ± 2 Ma Early Cambrian Pfänder et al. (2002)

Tannu-Ola (TO) western Tuva, southern Siberia Late Neoproterozoic Cambrian–Early Ordovician Mongush et al. (2011)
Lake western Mongolia ca. 570 Ma Middle–Late Cambrian Yarmolyuk et al. (2011),

Kovach et al. (2011)
Dzhida (Dz) N. Mongolia-Transbaikalia (Russia) L. Neoproterozoic-E. Cambrian Early Ordovician–Early

Devonian
Belichenko (1969),
Gordienko et al. (2007)

Bayanhongor
(BH)

Central Mongolia 569 ± 21 Ma Late Cambrian Kepezhinskas et al. (1991),
Buchan et al. (2001)

Kurai (Kr) Southern Russian Altai 598 ± 25 Ma Middle Cambrian Safonova (2009)
Katun (Kt) Northern Russian Altai Early Cambrian Middle Cambrian Safonova et al. (2011a)
Zasur'ya (Zs) Northwestern Russian Altai Late Cambrian Early Devonian Safonova et al. (2011b)
Tangbale (Tn) West Junggar, NW China E.-M. Ordovician, L. Devonian Xiao et al. (1994),

G. Yang et al. (2015)
Maile West Junggar, NW China L. Silurian (Wenlock-Pridoli) L. Devonian G. Yang et al. (2015)
Karamay (Km) West Junggar, NW China E.-M. Devonian Late Carboniferous G. Yang et al. (2015)
Darbut (Db) West Junggar, NW China middle-late Devonian Late Carboniferous G. Yang et al. (2015)
Fan-Karategin (FK) S. Tienshan, Tajikistan Middle-Late Devonian Carboniferous Volkova and Budanov (1999)
Kokshaal (Ks) central Tienshan, Kyrgyzstan Middle-Late Devonian Late Carboniferous Safonova et al. (2016a)
Ulaanbaatar (UB) Hentey Range, N. Mongolia L. Silurian-E. Devonian Early Carboniferous Safonova and Santosh (2014)
Kalamaili (Kl) East Junggar, E. China L. Devonian - E. Carboniferous Late Carboniferous Zhang et al. (2009)
Char East Kazakhstan L. Devonian - E. Carboniferous Late Carboniferous Safonova et al. (2012)
Bayingu (Bg) Southern Junggar L. Devonian - E. Carboniferous Late Carboniferous Gao et al. (1998),

Xu et al. (2006)
Solonker (Sk) Inner Mongolia 295 ± 15, 298 ± 9 Ma Late Permian Miao et al. (2008),

Jian et al. (2010)
Akiyoshi SW Japan M. Carboniferous Early Permian Isozaki et al. (1990),

Kanmera and Sano (1991)
Khabarosvk (Kh) Western Sikhote-Alin Carboniferous-Permian Early Permian Safonova (2009)
Mino-Tamba (MT) Central Japan Permian Early–Middle Jurassic Isozaki et al. (1990),

Safonova et al. (2016b)
Samarka (Sm) Central Sikhote-Alin Carboniferous-Permian Middle–Late Jurassic Golozubov (2006)
Chichibu (Ch) SE Japan Triassic Jurassic–Early Cretaceous Wakita (2012),

Ishizuka et al. (2003)
Taukha (Ta) Southern Sikhote-Alin M.-L. Triassic Jurassic–Early Cretaceous Golozubov (2006)
Kiselevka-Manoma (KM) Northern Sikhote-Alin M. Jurassic Early Cretaceous Filippov et al. (2010)
Naizawa (Nz) Hokkaido, Japan L. Jurassic Early Cretaceous Ueda et al. (2000)
Shimanto (Sm) SE Japan E. Cretaceous Late Cretaceous Taira et al. (1988)
Smagin (Sg) East Kamchatka L. Cretaceous Late Cretaceous Saveliev (2003)

a — abbreviations in parentheses match those in Fig. 4; and b — key selected references for geology and geochemistry are shown in this column. E., early; M., middle; and L., late.
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the Neoproterozoic to the Permian and tracking oceanic plume
magmatism (Safonova and Santosh, 2014; Table 3). Most localities
of accreted seamount OPS in the CAOB can be divided into two
major groups, Late Neoproterozoic-Cambrian and Devonian-
Permian, plus a less abundant group of Ordovician-Silurian units.
The Late Neoproterozoic-Cambrian seamounts, formed in the Paleo-
Asian Ocean, were accreted to the IOAs and active margins of the Si-
berian and Tarim cratons and Tuva-Mongolian and Dzabkhan
microcontinents. The Ordovician-Silurian oceanic intra-plate
magmatism, probably less intensive and/or extensive, produced oce-
anic rises in the Turkestan Ocean. They were accreted to the active
margins of the Kazakhstan continent and Tarim craton. The
Devonian-Permian seamount OPS recorded the final stages of the
Paleo-Asian Ocean and the intra-plate environments in the Mongol-
Okhotsk Ocean; those oceanic rises were accreted to the active margins
of the Siberia and Tarim cratons and Kazakhstan continent (Safonova,
2008, 2009; Safonova et al., 2011a, 2011b, 2012; Safonova and
Santosh, 2014). The seamounts formed in the Paleo-Pacific Ocean in
late Paleozoic and Meso-Cenozoic time are currently hosted by the ac-
cretionary complexes of the Russian Far East and Japanese Islands. A
part of those accretionary complexes is often considered as previously
single units later separated by the Sea of Japan, which opened at ca.
15 Ma (Kojima et al., 2000; Safonova, 2009; Filippov et al., 2010;
Safonova and Santosh, 2014).

3.4. Blueschist belts

The third important characteristics for recognition of the Pacific-type
belts is blueschists formed after oceanic basalts, as they mark fossil
subduction zones and are therefore key indicators of Pacific-type
convergent margins. In the CAOB, localities of blueschists, formed
after MORB and OIB, have been discovered in many accretionary
complexes of Transbaikalia-northern Mongolia, Altai-Sayan, eastern
Kazakhstan, Russian and Chinese Altai, Tajik, Kyrgyz and Chinese
Tienshan and in Inner Mongolia (Fig. 4; Table 2; e.g., Gao et al., 1995;
Buslov et al., 1998; Volkova and Budanov, 1999; Volkova and Sklyarov,
2007; Volkova et al., 2009; Gao et al., 2011; Safonova and Maruyama,
2014; Safonova and Santosh, 2014). In general, three groups
of BSBs can be recognized according to their age and location:
(1) Late Neoproterozoic-Early Cambrian BSBs of Transbaikalia-northern
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Mongolia (North Muya, Oka, Kurtushiba) and Altai-Sayan regions
(Borus, Kurai, Uimon); (2) Ordovician BSBs of eastern Kazakhstan
(Char or Chara or Charsk), West Junggar (Tangbale) and Inner
Mongolia (Ondor Sum); and (3) Devonian-Carboniferous BSBs of
southern Tienshan (Fan-Karategin, Atbashi, Tonghuashal, Kekesu-
Akeyazi). They occur as slices and/or lenses, e.g., the Oka and Kurtushiba
BSBs of western Transbaikalia and the Uimon BSB of the Russian Altai, or
as blocks inmélange, e.g., the Chara BSB of eastern Kazakhstan and Borus
BSB of North Sayan. The BSBs are spatially associated with coeval or
older OPS and/or accretionary complexes. The protoliths of blueschists
are mostly N-MORB or enriched OIB basalts (e.g., Volkova and
Budanov, 1999; Gao and Klemd, 2003; Ai et al., 2006; Volkova and
Sklyarov, 2007; Volkova et al., 2009). The blueschist mineral assem-
blages include Na–Ca amphiboles (glaucophane, lawsonite), epidote,
clinozoisite, chlorite, albite, pumpellyite, calcite, quartz, stilpnomelane
and phengite/muscovite plus accessory rutile, titanite and magnetite.
Blueschists typically occur at the base of accreted OPS or in lower
units of accretionary complex (Wakita, 2012) (Fig. 6D). Their presence
in an accretionary complex suggests that a part of subducted OPS (ba-
saltic) was separated from the descending slab and then quickly
uplifted. Possible mechanisms of exhumation could be either the re-
verse currents in accretionary wedge caused by seamount – island arc
or island arc – active margin collisions, or the release of large amounts
of water due to strong dehydration of subducting serpentinite-rich
slab (Volkova and Sklyarov, 2007).

The widespread Neoproterozoic to late Paleozoic tholeiite-
boninite intra-oceanic arcs, Neoproterozoic to Mesozoic seamount
OPS units and Paleozoic MORB-OIB-derived blueschist belts in the
CAOB clearly indicate that the latter was initiated and evolved as a
Pacific-type orogen (Buslov et al., 1998; Pfänder et al., 2002;
Gordienko et al., 2007; Volkova and Sklyarov, 2007; Yarmolyuk
et al., 2012; Safonova and Maruyama, 2014; Safonova and Santosh,
2014). Consequently, the CAOB consists of numerous smaller
P-type orogenic belts with subordinate collision-type belts formed
Fig. 7. Plots of whole-rock Nd isotope characteristics of different segments of the CAOB. A, late
2011; Safonova et al., 2011a, 2011b; IOA, intra-oceanic arc; ConA, continental arc); B, Early–M
et al., 2011); C, Early Paleozoic granitoids,metasediments and volcanic rocks of the Lake Zone,w
in northern Kazakhstan (Heinhorst et al., 2000; Kröner et al., 2008).
by local continent-microcontinent collisions, e.g., Kazakhstan and
North Tianshan, Kazakhstan and Tarim, Siberia and Tuva-Mongolia,
Siberia and Dzabkhan (Mossakovsky et al., 1993; Didenko et al.,
1994; Fedorovskii et al., 1995; Kheraskova et al., 2003; Kozakov
et al., 2005; Charvet et al., 2007; Konopelko et al., 2008; Alexeiev
et al., 2009; Biske and Seltmann, 2010; Levashova et al., 2010;
Alexeiev et al., 2011; Han et al., 2011; Zheng et al., 2013). Thus, the
Central Asian Orogenic Belt was a major supplier of juvenile crust
in Asia during the Phanerozoic.

4. Juvenile versus recycled crust in the CAOB

4.1. Methodological background

The juvenile vs recycled (reworked) origin of continental crust has
been commonly evaluated using the methods of isotope geochemistry:
whole-rock Nd (e.g., Jahn et al., 2000; Turkina et al., 2007; Jahn, 2010;
Kruk et al., 2011; Long et al., 2011; Urmantseva et al., 2012) or Hf-in-
zircon (e.g., Long et al., 2007; Belousova et al., 2010; Cai et al., 2011;
Kröner et al., 2014; Chen et al., 2015). The advent, fast distribution
and wide application of the Hf-in-zircon isotope methodology during
the last 10 years allowed more reliable evaluation of the proportions
of juvenile to recycled crust in older orogenic belts. Both methods are
typically applied for magmatic and sedimentary rocks or for their
hosted zircons, in particular,mafic rocks, granitoids andmetasediments.
Mafic rocks of supra-subduction complexes are studied by the whole-
rock Nd method (if their ages are known) for differentiating intra-
oceanic and active continental margin arcs, because the former are
unambiguously juvenile as dominated by boninites, tholeiitic basalts
and andesitic magmas with positive epsilon Nd values, whereas the
latter may be formed by both juvenile igneous complexes consisting
of tholeiitic to calc-alkaline basalts and andesites with positive epsilon
Nd values and recycled magmas, i.e. shoshonitic, andesitic to felsic
with negative positive epsilon Nd values. In addition, microcontinents,
Neoproterozoic-Early Paleozoic mafic and granitic rocks of the Russian Altai (Kruk et al.,
iddle Paleozoic granitoids, metasediments and volcanic rocks of the Chinese Altai (Long
esternMongolia (Kovach et al., 2011); D, Early Paleozoic of the Stepnyak island-arc terrane



Fig. 8. Plots of Hf-in-zircon isotope characteristics of several CAOB segments. A, recycled crust of the Kokchetavmicrocontinent (granitoids in circles, Glorie et al., 2015) and juvenile crust
of the Baidaulet-Akbastau intra-oceanic arc (granitoids in crosses, Kröner et al., 2014); B, dominantly recycled crust of the Central Tienshanmicrocontinent (granitoids, Kröner et al., 2013,
2014; metasediments, Rojas-Agramonte et al., 2014); C, juvenile, mixed and recycled segments of the Chinese Altai (metasediments, Jiang et al., 2011; Long et al., 2011); D, dominantly
juvenile crust of the Russian Altai inferred from metasediments (Chen et al., 2015).
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when approaching and colliding an active margin, may serve as sources
of crustal crust, typically recycled, which can be involved into supra-
subduction magma generation. Granitoids of active margin terranes
Fig. 9. Microcontinents in the western and central CAOB (modified from Levashova et al., 201
Chatkal–Naryn; DA, Derba–Arzybey; GK, Greater Karatau; Jg, Junggar; Ko, Kokchetav; LK, Less
TM, Tuva–Mongolian; Tu, Turpan (Turphan, Turfan); UK, Ulutau. In circles: BH, Bayanhongor
shown schematically — for more details see Fig. 4 and related references.
can be analyzed by both methods (whole-rock Nd and Hf-in-zircon)
also to differentiate intra-oceanic and continental margin magmatic
arcs or to define a dominant isotopic type ofmagma source in the latter:
0). AM, Aktau–Mointy; Dz, Dzabkhan (including Baydrag); CM, Central Mongolian; ChN,
er Karatau; NTS, North Tien Shan (also referred to as Central Tien Shan); TB, Tarbagatai;
ophiolite belt; L, Lake island-arc terrane. The boundaries and subdivisions of foldbelts are



Fig. 10. The CAOB segments possessing isotope features of juvenile, mixed and recycled crust (based on Kröner et al., 2014, with modifications from Shen et al., 2015; Guy et al., 2015; R. Seltmann, pers. comm.). White stars mark an approximate
location of the accretionary complexeswith OPS-hostingOIB andOIB-MORB-derived blueschists, suggesting Pacific-type (accretionary) orogeny and, therefore, dominantly juvenile crust, but within the “recycled segments”. The original fields are for
the geology and Nd-isotope based juvenile crust areas of the Russian Altai (Gorny and Rudny Altai) and eastern Kazakhstan (dashed line). The eastern Kazakhstan area bears signs of tectonic erosion (see Section 5 and Fig. 14).
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Fig. 11. Tectonic erosion at Pacific-type convergent margins. A and B, multi-channel
seismic reflection profile plate (A) and its interpretation (B) across the axis and lower
slope of the Japan trench along the 35°45 N′ latitude, showing the subducted oceanic
slab (modified from Hilde, 1983). The data for the profile were collected by the Japan
National Oil Corporation for the IPOD Japan Trench transect (Shipboard Scientific Party,
1980). C, subduction-erosion model indicating areas of most severe fracturing and drag-
ging of dislodged fragments into subduction channel (from von Huene et al., 2004).
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juvenile, mixed or recycled. Metasedimentary basins also can form in
various tectonic settings: intra-oceanic arcs (greywacke turbidite
basins), active continental margin or continental arcs (felsic to mafic
turbidites) and microcontinents. Island-arc turbidite basins can be
reliably identified by dominantly mafic composition and Nd isotopes
(e.g., Kruk et al., 2011; Long et al., 2011) (Fig. 7). Continental arc
terranes and related metasediments can be both juvenile or mixed,
whereas old microcontinental terranes typically possess recycled iso-
tope characteristics. Therefore, the differentiation of microcontinents
from continental arcs needs the analysis of the Hf isotope ratios in
detrital zircons of metasedimentary basins with an emphasis on the
proportions of juvenile to recycled crust (e.g., Turkina et al., 2007; Sun
et al., 2008; Jiang et al., 2011; Kruk et al., 2011; Salnikova et al., 2013)
(Fig. 8). A special issue is the idea of mixed reservoirs of magma gener-
ation, which has been used to explain the isotopic heterogeneity of
some magmatic complexes (Jahn, 2010; Cai et al., 2011; Kruk et al.,
2011; Konopelko et al., 2013; Wang et al., 2013, 2014). However,
some researchers think that the whole-rock Nd isotope systematics
does not reflect source heterogeneity and that such a heterogeneity of
Hf-in-zircon isotope characteristics may originate from initially mixed
magma sources (Belousova et al., 2011; Kröner et al., 2014). At the
same time, it is hard to prove whether those isotopically mixed
magma sources and their derivedmelts can exist in principle. Of course,
best results could be obtained by combining the Hf-in-zircon with
whole-rock Nd isotopic systematics, but this is not always possible, as
all mafic and metamorphic rocks may contain few, if not zero, zircons
and such a “combined“ approach would be very expensive and not
always necessary or justified.

4.2. Whole-rock Nd vs Hf-in-zircon data

The analysis of Nd and Hf isotope ratios in rocks and zircons of the
CAOB is very important because the belt has a very complex history
since formed by multiple episodes of oceanic subduction and accretion,
collision and amalgamation of arcs, microcontinents and continents
(see Section 3). They produced huge amounts of mafic to felsic magmas
and sedimentary basins possessing both juvenile and mixed/recycled
isotope characteristics. The Nd isotope data obtained from CAOB granit-
oids since the 2000s allowed researchers to introduce and confirm an
idea that the CAOB was the most important site of juvenile crustal
formation since the Neoproterozoic and to develop a general scenario
of massive juvenile crust production in the CAOBwith limited contribu-
tion of old microcontinents to the genesis of Phanerozoic granitoids
(e.g., Chen et al., 2000; Jahn et al., 2000; Jahn, 2004; Jahn et al., 2004;
Kovalenko et al., 2004; Yuan et al., 2007; Kröner et al., 2008;
Yarmolyuk et al., 2012). Mafic rocks have been studied to a much lesser
degree (e.g., Kovach et al., 2011; Safonova et al., 2011a, 2011b, 2012,
2016a). However, the previous geology- and geochemistry-based rec-
ognition of Precambrian terranes in the CAOB (e.g., Buslov et al., 2001;
Dergunov et al., 2001; Kuzmichev et al., 2001; Salnikova et al., 2001;
Badarch et al., 2002; Kozakov et al., 2005; Li et al., 2006), which has
been supported by the recent Hf-in-zircon isotope data from the CAOB
(e.g., Sun et al., 2008; Belousova et al., 2010; Kröner et al., 2012a,
2013) coupled with re-assessment of Nd isotope data (e.g., Rytsk
et al., 2011) showed that the CAOB continental crust includes from 50
to 80% of recycled or re-worked crust (Condie and Kröner, 2013;
Kröner et al., 2014 and references therein). This is typically explained
by the presence of microcontinents (Figs. 9A, B; 10) or by the mixed
sources of primary magmas (Fig. 7A, B; 8C).

The presence of numerous microcontinents in the CAOB is reflected
in thewhole-rock-Nd andHf-in-zircon data obtained, for example, from
the Barguzin terrane of the Baikal-Muya belt (Rytsk et al., 2011) and the
Angara-Kan terrane of the Yenisey Range (Turkina et al., 2007) at the
southern and south-westernmargins of the Siberian Craton, respective-
ly, from the Kazakhstan terranes ( Kröner et al., 2008, 2012a, 2012b,
2013) and from the Tuva-Mongolian, Dzabkhan and Tarbagatai terranes
inMongolia (e.g., Kozakov et al., 2005, 2007, 2011) (Fig. 9). Evidence for
mixed magma sources comes frommany recent Hf-in-zircon data from
CAOB granitoids (e.g., Sun et al., 2008; Jahn, 2010; Cai et al., 2011;
Konopelko et al., 2013; Kröner et al., 2013; Wang et al., 2013; Kröner
et al., 2014; Wang et al., 2014).

The choice of suitable objectives for the Nd bulk rock and Hf-in-
zircon isotope studies is important as illustrated by the Nd and Hf data
from the Neoproterozoic to early Paleozoic magmatic arcs in the
Russian and Chinese Altai, western Mongolia and northern Kazakhstan
in the western CAOB (Figs. 7, 8). The juvenile Nd bulk rock characteris-
tics were obtained from granitoids, mafic volcanics of intra-oceanic arcs
and oceanic islands as well as from their related turbidite basins in the
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Lake zone in Mongolia (Kovach et al., 2011; Fig. 8A) and Chinese and
Russian Altai (Kruk et al., 2011; Long et al., 2011; Safonova et al.,
2011a, 2011b) (Fig. 7B, C). Active continental margin granitoids of the
Russian and Chinese Altai have positive to negative εNd and εHf values
(Figs. 7B, C, 8C, D) (e.g., Sun et al., 2008; Cai et al., 2011; Jiang et al., 2011;
Kruk et al., 2011; Long et al., 2011; Chen et al., 2015). The thick
metasedimentary units of the southern Russian and Chinese Altai have
been previously interpreted as Altai-Mongolian microcontinent
(e.g., Hu et al., 2000; Buslov et al., 2001; Li et al., 2006; Glorie et al.,
2011; Safonova, 2014), but their recent Hf-in-zircon study clearly
showed they have mixed isotope characteristics implying rather an ac-
tive continental margin (Sun et al., 2008; Cai et al., 2011; Jiang et al.,
2011; Chen et al., 2015). Thus, whole rock Nd isotopes are sufficient
for studying intra-oceanic arcs with boninites, blueschist and OPS, be-
cause they match the geological and lithological data suggesting forma-
tion of juvenile crust (see Section 2). The Hf isotopes can be used for the
study of metasedimentary units and granitoids of unclear origin, for ex-
ample, microcontinent vs active margin, intra-oceanic vs continental
Fig. 12. Examples of tectonic erosion and arc subduction from Japan. A, a typical succession of a
western Japan, showing that coeval arc granitoids and accretionary units must be separated by o
of probable tectonic erosion in Japan (outlined by red rectangles): there, the Cretaceous Ryoke
(from Isozaki et al., 2010; Safonova et al., 2015b).
arc, active margin vs post-collisional granitoids. The Chinese Altai,
representing a granitoid-rich terrane, appeared to be an Early
Paleozoic continental magmatic arc based on both whole-rock Nd
(Wang et al., 2009; Long et al., 2011; Fig. 7B) and Hf-in-zircon data
(Sun et al., 2008; Cai et al., 2011; Jiang et al., 2011) (Fig. 8C). On the con-
trary, the Russian Altai includes boninite-bearing IOA and accretionary
wedge with seamount OPS terranes, blueschists and turbidite basins
with positive εNd values (Buslov et al., 1998; Safonova, 2008, 2009;
Kruk et al., 2011) (Fig. 7C). Consequently, there was no need to analyze
Hf-in-zircon isotopes (Chen et al., 2015) for understanding the nature of
crust in that area.

Another example of disagreement between Hf-in-zircon and Nd iso-
tope data comes from the Gissar terrane of the South Tien Shan and the
Chatkal-Kurama terrane of theMiddle Tien Shan in Uzbekistan. Carbon-
iferous granitoids from these terranes showmostly negative εNd values,
but dominantly positive εHf values (Dolgopolova et al., 2017-in this
issue). In addition, the problem may be due to the gap between the
DM and CHUR lines, which becomes greater as the rocks get younger.
ccretionary complexes of different ages reconstructed across the Shikoku island in south-
lder accretionarywedges (from Safonova et al., 2015a, based on Nakajima, 1994); B, areas
granitoids are spatially adjacent to the coeval units of the Shimanto accretionary complex



Fig. 13. Intra-oceanic arcs directly subducting into the Nankai trough with minor or nil accretion over the subduction zone (modified from Yamamoto et al., 2009).
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Therefore, we cannot expect the same “juvenile vs recycled propor-
tions” if inferred from epsilon Hf and epsilon Nd data. Anyway, the rea-
sons for those abnormal isotope behaviors remain controversial and
require still focused study.

The “mixing” sourcemodel for the origin of the CAOB crustwasmen-
tioned in connectionwith theKokchetav-Tienshan (or Kokchetav-Ishim)
“superterrane” and Bochshakol-Chingiz arc in the western CAOB
(Belousova et al., 2011; Degtyarev, 2011; Kröner et al., 2012b). However,
this “superterrane” actually consists of geologically different terranes: the
Stepnyak arc and the Kokchetav microcontinent in the north, Baidaulet-
Akbastau arc in the center and the North Tienshan and Aktau-Junggar
(or Aqtau-Mointy) microcontinents and the Middle Ordovician Kentash
arc in the south (Fig. 9) (Bakirov and Maksumova, 2001; Obut et al.,
2006; Windley et al., 2007; Biske and Seltmann, 2010; Degtyarev et al.,
2012). The granitoids of the “superterrane” yielded variable, i.e., positive
to negative, Hf isotope ratios, which were interpreted as mixing between
juvenile magmas and older crustal protoliths (Belousova et al., 2011;
Kröner et al., 2014), but the geological position, age and rock associations
of the Kentash arc suggest its intra-oceanic origin (Degtyarev et al., 2012).
The Stepnyak arc formed on a sialic basement, but lithologically its intru-
sions are dominated by TTG-type granitoids (tonalite and granodiorite)
and showing mostly positive Nd isotopes (Kröner et al., 2008; Fig. 7D).
The Baidaulet-Akbastau arc also displays juvenile Hf isotope characteris-
tics (Kröner et al., 2014; Fig. 8A). The Kokchetav and North Tienshan
microcontinents are dominated by granitoids with recycled isotope char-
acteristics (Kröner et al., 2013; Glorie et al., 2015) (Fig. 8A, B). However,
the metasediments from spatially distinct terranes of the northern
Tianshan yielded both juvenile and recycled Hf isotope characteristics
(Rojas-Agramonte et al., 2014; Fig. 8B) also suggesting a “multi-terrane”
provenance or mixed results as well, which may require reconsideration
against more careful analysis of tectonic units. Therefore, at least two ex-
planations are possible for the wide range of Hf isotope ratios: (i) mixed
juvenile and recycled magma protoliths; and (ii) sampling of both juve-
nile and recycled terranes from a tectonically composite superterrane
(Figs. 2, 4; 8A). This particular area is considered in details in Degtyarev
et al. (in this issue).

4.3. Isotopes vs geology

Why do the Hf isotope data show a big portion of recycled crust in
the CAOB in spite of the presence of numerous intra-oceanic arcs,
MORB/OIB protolith blueschist and accreted seamount OPS (Table 1;
Section 3; Figs. 4, 5, 7, 8)? Fig. 10 shows the CAOB segments of predom-
inantly juvenile, mixed and recycled (reworked) crust, which were
recognized by Kröner and co-authors based on Hf-in-zircon and
whole-rockNd isotope data (Kröner et al., 2014 and references therein).
In addition, it shows Russian Altai, whose juvenile nature was proved
many years ago by geological data (Simonov et al., 1994; Buslov et al.,
1998, 2001, 2002) and by more recent Nd isotope data (Kruk et al.,
2011; Safonova et al., 2011a, 2011b). However, several segments of
re-cycled crust in the Tienshan orogen, northwestern and northern
Mongolia (Fig. 10) include accretionary complexes with blueschist
belts derived from oceanic basalts (OIB andMORB) and accreted ocean-
ic plate stratigraphy units with OIBs (e.g., Volkova and Budanov, 1999;
Ai et al., 2006; Volkova and Sklyarov, 2007; Volkova et al., 2009;
Ruppen et al., 2014; Safonova and Santosh, 2014; Safonova et al.,



Fig. 14.Areas of probable tectonic erosion in thewestern CAOB showing close location of coeval accretionary (terrigeneous-volcanogenic) units and arc granitoids (dashed outlines). A, the
Chingiz arc in central-eastern Kazakhstan (modified from Degtyarev, 2011); B, the Char belt of eastern Kazakhstan (modified from Polyanskii et al., 1979; Safonova et al., 2012).
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2012, 2016a). More specifically, the juvenile nature of the Altai intra-
oceanic arc (Kuznetsk-Altai arc in Russian literature, Buslov et al.,
2001) is confirmed by the presence of boninites, OIB/MORB-protolith
of blueschists and accreted seamount OPS (Buslov et al., 1998, 2002;
Volkova et al., 2005; Safonova, 2008, 2011a, 2011b). Therefore, there
is an objective disagreement between geological and isotopic data.

From the above examples one can infer that while studying by iso-
tope methods the nature of the CAOB crust, juvenile versus recycled,
some researchers might have worked with biased concepts or with bi-
ased datasets, for example, those dominated by granitoids (e.g., Jahn
et al., 2000; Jahn, 2004), although the CAOB crust includes many
metasedimentary domains or those dominated by mafic rocks, both
accreted, post-accretionary and/or post-collisional (intra-plate). Such
a disproportional sampling or ignorance of gabbro, basalt andmetabasic
rocks, which are typical parts of OPS, accretionary, intra-oceanic arc and
intra-plate igneous and metamorphic complexes, often occupying huge
territories, resulted in pseudo-correlations due to the artificial sampling
gap or bias. Data obtained from different terranes, for example, from is-
land arcs and microcontinents, should not be merged; otherwise we
come to conclusions of “mixed source of magma”, whereas it can be
just a product of an artificial mix-up of juvenile and recycled character-
istics. All these “biases” logically would lead to wrong or incomplete
conclusions, actually representing a half of the truth. Consequently,
while sampling the rock units and planning their investigation all re-
searchers working in those structurally and historically complex oro-
genic belts must be absolutely sure what type of terrane they sample
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and choose themethods that better suit the tasks and problems they are
going correspondingly to fulfill and to solve. “Geology must be brought
back into equation” (White et al., 2013).

5. Tectonic erosion of juvenile crust and arc subduction: evidence
from the CAOB

In previous sections I emphasized several disagreements between
Hf-in-zircon and whole-rock Nd isotope data and between isotope
and geological data. First, the Hf-in-zircon isotope data show the domi-
nantly recycled crust (see Section 4) although the whole-rock Nd iso-
tope data suggest its dominantly juvenile character (Jahn et al., 2000;
Jahn, 2004). Second, the isotope data from several segments of the
CAOB crust suggest their recycled crust (Fig. 10) and their dominant
Pacific-type orogenic character implying juvenile crust as inferred
from geological data (Figs. 2-4; Table 1; Section 3). In addition to the
presence ofmicrocontinents in theCAOB crust and themixed characters
of magma reservoirs of most granitoids, these disagreements can be ex-
plainedby the tectonic erosion of juvenile arc crust and accreted oceanic
terranes (OPS, OIB, MORB, OPB). Although, the Pacific-type belts are
sites of continental growth, they are also places of strong plate interac-
tions accompanied by tectonic erosion and arc subduction (Scholl and
von Huene, 2007; Clift et al., 2009; Yamamoto et al., 2009; Stern and
Scholl, 2010; Safonova et al., 2015a, 2015b). Tectonic erosion of juvenile
crust and arc subduction at the convergent margins of the Paleo-Asian
Ocean was quite probable. The question is whether the big portion of
recycled crust in some segments of the CAOB can be due to tectonic
erosion?

The first evidence for tectonic erosion at P-type active margins was
obtained from seismic reflection profiles across the Tonga (Hilde and
Fisher, 1979) and Japan trenches (von Huene and Uyeda, 1981; Hilde,
1983), showing prominent sediment-filled grabens and horsts with
thinned sediments (Fig. 11A, B). The mechanism of tectonic erosion
includes destruction of oceanic slab, island arcs, accretionary prism and
fore-arc by thrusting, the prominent oceanic floor relief as horsts, grabens
and oceanic rises scratching the hanging wall, and by (hydro)fracturing
(von Huene et al., 2004; Yamamoto et al., 2009) (Fig. 11C). At
subduction-related convergent margins, the TTG-type crust and
material of accretionary wedges can be eroded and subducted with
oceanic slab into the deep upper mantle. Evidence for this comes
from the Cretaceous Shimanto accretionary complex of Shikoku
Island in Japan, where accretionary units are spatially adjacent to
the coeval granitoids of the Ryoke belt, suggesting that older accre-
tionary complexes have been eroded (Fig. 12; Safonova et al.,
2015a, 2015b, 2016b), and from the present-day tectonic erosion
and ongoing subduction of several oceanic arcs of the Philippine
Plate under the Japanese Arc (Fig. 13).

The modern Pacific Ocean is surrounded by 75% of eroding
(narrowing or non-accreting) convergent margins and 25% of growing
or accreting margins. The global long-term rate of subduction-related
erosion is much greater than that of crustal additions (Senshu et al.,
2009; Stern, 2011). As the present Western Pacific is a most probable
analog of theCAOB (Safonova et al., 2011), one can suggest that process-
es of tectonic erosion also could have been active at the consumingmar-
gins of the Paleo-Asian Ocean, which was responsible for formation of
the CAOB.

There are several areas in the CAOB, which host intra-oceanic arcs
and/or accreted seamount OPS, and/or blueschists formed after MORB/
OIB, on the one hand, and the isotopically-proven recycled crust
(Kröner et al., 2014), on the other hand: Tienshan, northwestern and
northern Mongolia (Fig. 10). In addition, eastern Kazakhstan remains
poorly studied in terms of Hf-in-zircon isotopes in granitoids as so far
whole rock Nd isotope data have been obtained for Late Devonian
oceanic basalts only (Safonova et al., 2012).

In terms of geology, a good indication of probable cases of tectonic
erosion at old Pacific-type convergent margins is the close spatial
location or structural juxtaposition of coeval accretionary units and
TTG-type granitoids (andesites, tonalites, granodiorites), suggesting
that older accretionary and/or convergent margin units were eroded
(Safonova et al., 2015a, 2015b). Several probable cases of tectonic
erosion can be proposed in the western CAOB, more specifically, in the
middle to late Paleozoic convergent margin units of eastern and
southeastern Kazakhstan and southern Kyrgyz Tienshan. For example,
the Devonian terrigeneous-carbonate and volcano-sedimentary conti-
nental margin units, superimposed onto the eastern part of the Chingiz
arc terrane are, in places, adjacent to Devonian granites of probably arc
origin (Degtyarev, 2011) (Fig. 14A). Second, the Chatkal-Atbashi
Ordovician arc in the Kyrgyz Middle Tienshan includes well dated
coeval Early Devonian arc granitoids, ophiolites and accretionary units
(Alexeiev et al., 2016) and therefore represents a relatively well-
proven locality of tectonic erosion. Third, the Char accretionary complex
in eastern Kazakhstan hosting late Devonian-early Carboniferous OPS
units (Safonova et al., 2012) includes Early Carboniferous limy sand-
stones and siltstones, spatially adjacent to Early Carboniferous tonalites
(Polyanskii et al., 1979; Kuibida et al., 2016) (Fig. 14B). Consequently,
in addition to the Chatkal-Atbashi arc in the Kyrgyz Tienshan
(Alexeiev et al., 2016), these three areas (Chingiz, Kyrgyz South
Tienshan, Char) are best “candidates” for the cases of probable tec-
tonic erosion at active margins of the Paleo-Asian Ocean, but both
detailed geological survey and precise dating of key lithologies are
necessary to prove it.

There are also several indirect evidences for themiddle-late Paleozo-
ic tectonic erosion in the western CAOB, in general, and Kyrgyz
Tienshan, in particular. First, the number of middle Paleozoic accreted
OPSwith OIB in the Kyrgyz Tienshan is smaller than in the other regions
of the CAOB (Fig. 4). There are several localities of accreted OPS-OIB
units in the Kyrgyz Tienshan (Safonova et al., 2016a), but they are nota-
bly less abundant than those of the same age in the adjacent western
Junggar (G. Yang et al., 2015). Second, the amount and size of accreted
middle Paleozoic OIB-bearing OPS units in the whole CAOB are, in
general, much less than those of late Neoproterozoic, early and late
Paleozoic ages (see Tables 2, 3, Section 3.3 and Safonova and Santosh,
2014). Third, the amount of middle Paleozoic intra-oceanic arcs is also,
in general, smaller than that of late Neoproterozoic and early Paleozoic
(Fig. 4, Table 2), which suggest direct arc subduction like in themodern
north-western Pacific (Fig. 13). All these facts may indicate either lesser
plume activity (Safonova and Santosh, 2014), or tectonic and/or
subduction erosion of OPS-OIB and IOAs or direct arc subduction in
middle Paleozoic time.

In spite of the dominantly Pacific-type style of the CAOB, its
continental crust includes a big portion of recycled crust (Kröner et al.,
2014 and references therein). This can be due to the presence of
numerous microcontinents in the CAOB (Fig. 2) and due to destruction
of juvenile crust formed at convergent margins. According to various
evaluations, from 80 to 100% of the juvenile crust of initially Pacific-
type orogenic belts, including those in the CAOB, could have been
removed by later tectonic erosion and arc subduction (Clift et al.,
2009; Yamamoto et al., 2009; Stern and Scholl, 2010; Ichikawa et al.,
2013). The identification of cases of tectonic erosion is critical for the
CAOB as Pacific-type convergent margins are places of probably most
active and fast destruction of continental crust and they are the only
ways to deliver the crustal material to the deep mantle and to
metasomatize it (Litasov, 2011; Safonova et al., 2015a, 2015b). The
eroded/subducted TTG-type juvenile continental crust could be either
returned to the surface as supra-subduction granitoids with recycled
isotope signatures or accumulated at the Mantle Transition Zone and
served as a source of heat, which induced mantle upwelling, trigger
plumes and surface rifting (Maruyama et al., 2011; Safonova et al.,
2015a, 2015b). Thus, not only the presence of certain rocks or forma-
tions may prove this or that tectonic process or setting – their absence
also can be a key for understanding how an accretionary orogen formed
and evolved.
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6. Conclusions

1. Accretionary or Pacific-type orogenic belts are major sites of conti-
nental growth through TTG-type juvenile granitoids magmatism,
which takes place at intra-oceanic and continental margin arcs, and
accretion of oceanic and island-arc terranes. Pacific-type belts can
be recognized by the presence of: (i) dominantly mafic, in places
boninite-bearing, intra-oceanic island arcs; (ii) accretionary wedges,
hosting the Ocean Plate Stratigraphy units, in particular, those
representing oceanic islands/seamounts/plateaus (OIB, OPB);
(iii) blueschists formed after MORB, OIB and/or OPB; (iv) huge
supra-subduction granitoid batholiths; and (v) paired metamorphic
belts.

2. The Central Asian Orogenic Belt is the world's largest accretionary or
P-type orogen and the major site of Phanerozoic juvenile crustal
growth. Evidence for its juvenile character comes from numerous
late Neoproterozoic to late Paleozoic accretionary complexes,
hosting the OPS units with OIBs and blueschist belts, formed after
MORB and OIB throughout the whole CAOB, and from the late
Neoproterozoic to middle Paleozoic boninite-bearing intra-oceanic
arcs in the Altai-Sayan area, western Mongolia, Transbaikalia and
northern Mongolia.

3. However, in spite of the geology-based accretionary nature and
positive whole rock Nd isotope characteristics in most of granitoid
localities of the CAOB, the Hf-in-zircon isotope data show a big por-
tion of recycled crust. Such a discrepancy can be explained by the
presence of accreted microcontinents, the isotopically mixed nature
of igneous reservoirs, the tectonic erosion of juvenile crust and/or
by the biased rocks sampling or interpretation of their setting
(e.g., focused on granitoids only). A very important problem, while
using Hf-in-zircon methods, is the disregard or underestimation of
primary geological information.

4. The Hf-in-zircon method works well for understanding a type of
magma source (juvenile, mixed or recycled) for a certain granit-
oid complex. The Hf-in-zircon data may be helpful for evaluating
the proportions of juvenile and recycled crust at localities lack-
ing clear geological evidence for this or that type of orogen,
e.g., in metasediments, or for large fields of intra-plate or/and
post-orogenic granitoids. The whole-rock Nd isotope systematics
works well for intra-oceanic arcs (mafic rocks and TTG-type
granitoids) and/or their related turbidite basins and post-
orogenic formations.

5. There are discrepancies between the Hf-in-zircon data, indicating
dominantly recycled crust in the middle and southern Tienshan
and southern Transbaikalia, and the geological data, showing the
presence of intra-oceanic arcs, OIB/MORB derived blueschists and
accreted oceanic islands in the same regions. In addition, there are
tectonically juxtaposed coeval arc granitoids and accretionary units.
This suggests that the Middle Paleozoic juvenile continental crust,
which formed at convergent margins in Kazakhstan, Tarim and
Siberia, underwent tectonic erosion.

6. Identification of Pacific-type orogens, as places of major crustal
growth, requires a detailed geological study, because the isotopic re-
sults may not reflect many posterior processes, e.g., tectonic erosion
of juvenile crust and/or arc subduction. Geology must be “put back
into equation” as field and laboratory recognition of OPS units,
blueschist belts and intra-oceanic arcs.
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